
Process Pools

First, let's see what you remember about processes.

Suppose we make two processes to execute some
function F:
 p = multiprocessing.Process(F, <args for p>)
 q = multiprocessing.Process(F, <args for q>)
 p.start()
 q.start()
Which process will finish first?

A) p B) q C) can't tell D) It depends on the args

How many times will "bob" print?
def Printer():
 print("bob")

def spawnProcesses():
 print("bob")
 for i in range(0, 2):
 p = multiprocessing.Process(target=Printer)
 p.start()

def main():
 for i in range(0, 4):
 p = multiprocessing.Process(target=spawnProcesses)
 p.start()

A) 2 B) 4 C) 12 D) 16

Because many of the advantages of
multiprocessing come from using multiple
processes to do part of one big task, it is very
common to want to start up multiple processes to
work on the same function, just with different
arguments. Process Pools do this automatically.

We create n processes with

 p = multiprocessing.Pool(processes=n)

We apply them to function func with

 p.map(func, [arg1, arg2, ..., argn])

The function func you call in this way can only have
one argument (though that may be a tuple).

Note that n here is the number of processes.

For example,
def printer(args):
 stringToPrint, numTimes = args
 for i in range(numTimes):
 print(stringToPrint)

def main():
 p = multiprocessing.Pool(processes=2)
 p.map(printer, [("She loves me.", 10),
 ("She loves me not.", 10)])

<FirstPoolExample.py>

The Pool.map method takes a function to call and a
list of arguments, one for each process being
created. If func returns a value, Pool.map returns a
list of the n values returned by that process. You
usually need to do something to put together these
n partial results into the final result.

<SecondPoolExample.py>
<ThirdPoolExample.py>

In that third example, why do the gains from
adding more processes taper off?

A) Because the computer is tired.
B) Because I am tired.
C) Because there aren't enough processors in the

computer.
D) Because coordinating lots of processes also

takes time.

Throwing more processes at a problem doesn't
necessarily mean that you'll get faster
computations. There is a balance between
savings from having multiple processes and costs
from having to manage all of them.

